Scrapy入门教程

在本篇教程中,我们假定您已经安装好Scrapy。 如若不然,请参考 安装指南

接下来以 Open Directory Project(dmoz) (dmoz) 为例来讲述爬取。

本篇教程中将带您完成下列任务:

  1. 创建一个Scrapy项目
  2. 定义提取的Item
  3. 编写爬取网站的 spider 并提取 Item
  4. 编写 Item Pipeline 来存储提取到的Item(即数据)

Scrapy由 Python 编写。如果您刚接触并且好奇这门语言的特性以及Scrapy的详情, 对于已经熟悉其他语言并且想快速学习Python的编程老手, 我们推荐 Learn Python The Hard Way , 对于想从Python开始学习的编程新手, 非程序员的Python学习资料列表 将是您的选择。

创建项目

在开始爬取之前,您必须创建一个新的Scrapy项目。 进入您打算存储代码的目录中,运行下列命令:

scrapy startproject tutorial

该命令将会创建包含下列内容的 tutorial 目录:

tutorial/
    scrapy.cfg

    tutorial/
        __init__.py

        items.py

        pipelines.py

        settings.py

        spiders/
            __init__.py
            ...

定义Item

Item 是保存爬取到的数据的容器;其使用方法和python字典类似。虽然您也可以在Scrapy中直接使用dict,但是 Item 提供了额外保护机制来避免拼写错误导致的未定义字段错误。 They can also be used with Item Loaders, a mechanism with helpers to conveniently populate Items.

类似在ORM中做的一样,您可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个Item。 (如果不了解ORM, 不用担心,您会发现这个步骤非常简单)

首先根据需要从dmoz.org获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑 tutorial 目录中的 items.py 文件:

import scrapy

class DmozItem(scrapy.Item):
    title = scrapy.Field()
    link = scrapy.Field()
    desc = scrapy.Field()

一开始这看起来可能有点复杂,但是通过定义item, 您可以很方便的使用Scrapy的其他方法。而这些方法需要知道您的item的定义。

编写第一个爬虫(Spider)

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。

其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。

为了创建一个Spider,您必须继承 scrapy.Spider 类, 且定义一些属性:

  • name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
  • start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  • parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。

以下为我们的第一个Spider代码,保存在 tutorial/spiders 目录下的 dmoz_spider.py 文件中:

import scrapy

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2] + '.html'
        with open(filename, 'wb') as f:
            f.write(response.body)

爬取

进入项目的根目录,执行下列命令启动spider:

scrapy crawl dmoz

该命令启动了我们刚刚添加的 dmoz spider, 向 dmoz.org 发送一些请求。 您将会得到类似的输出:

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)
2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Spider opened
2014-01-23 18:13:08-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2014-01-23 18:13:09-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2014-01-23 18:13:09-0400 [scrapy] INFO: Closing spider (finished)

注解

最后你可以看到有一行log包含定义在 start_urls 的初始URL,并且与spider中是一一对应的。在log中可以看到其没有指向其他页面( (referer:None) )。

现在,查看当前目录,您将会注意到有两个包含url所对应的内容的文件被创建了: Book , Resources,正如我们的 parse 方法里做的一样。

刚才发生了什么?

Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request 对象,并将 parse 方法作为回调函数(callback)赋值给了Request。

Request对象经过调度,执行生成 scrapy.http.Response 对象并送回给spider parse() 方法。

提取Item

Selectors选择器简介

从网页中提取数据有很多方法。Scrapy使用了一种基于 XPathCSS 表达式机制: Scrapy Selectors 。 关于selector和其他提取机制的信息请参考 Selector文档

这里给出XPath表达式的例子及对应的含义:

  • /html/head/title: 选择HTML文档中 <head> 标签内的 <title> 元素
  • /html/head/title/text(): 选择上面提到的 <title> 元素的文字
  • //td: 选择所有的 <td> 元素
  • //div[@class="mine"]: 选择所有具有 class="mine" 属性的 div 元素

上边仅仅是几个简单的XPath例子,XPath实际上要比这远远强大的多。 如果您想了解的更多,我们推荐 通过这些例子来学习XPath, 以及 这篇教程学习”how to think in XPath”.

注解

CSS vs XPath: 您可以仅仅使用CSS Selector来从网页中 提取数据。不过, XPath提供了更强大的功能。其不仅仅能指明数据所在的路径, 还能查看数据: 比如,您可以这么进行选择: 包含文字 ‘Next Page’ 的链接 。 正因为如此,即使您已经了解如何使用 CSS selector, 我们仍推荐您使用XPath。

为了配合CSS与XPath,Scrapy除了提供了 Selector 之外,还提供了方法来避免每次从response中提取数据时生成selector的麻烦。

Selector有四个基本的方法(点击相应的方法可以看到详细的API文档):

  • xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表 。
  • css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表.
  • extract(): 序列化该节点为unicode字符串并返回list。
  • re(): 根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。

在Shell中尝试Selector选择器

为了介绍Selector的使用方法,接下来我们将要使用内置的 Scrapy shell 。Scrapy Shell需要您预装好 IPython (一个扩展的Python终端)。

您需要进入项目的根目录,执行下列命令来启动shell:

scrapy shell "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

注解

当您在终端运行Scrapy时,请一定记得给url地址加上引号,否则包含参数的url(例如 & 字符)会导致Scrapy运行失败。

shell的输出类似:

[ ... Scrapy log here ... ]

2014-01-23 17:11:42-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
[s] Available Scrapy objects:
[s]   crawler    <scrapy.crawler.Crawler object at 0x3636b50>
[s]   item       {}
[s]   request    <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s]   response   <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s]   settings   <scrapy.settings.Settings object at 0x3fadc50>
[s]   spider     <Spider 'default' at 0x3cebf50>
[s] Useful shortcuts:
[s]   shelp()           Shell help (print this help)
[s]   fetch(req_or_url) Fetch request (or URL) and update local objects
[s]   view(response)    View response in a browser

In [1]:

当shell载入后,您将得到一个包含response数据的本地 response 变量。输入 response.body 将输出response的包体, 输出 response.headers 可以看到response的包头。

#TODO.. 更为重要的是, response 拥有一个 selector 属性, 该属性是以该特定 response 初始化的类 Selector 的对象。 您可以通过使用 response.selector.xpath()response.selector.css() 来对 response 进行查询。 此外,scrapy也对 response.selector.xpath()response.selector.css() 提供了一些快捷方式, 例如 response.xpath()response.css()

同时,shell根据response提前初始化了变量 sel 。该selector根据response的类型自动选择最合适的分析规则(XML vs HTML)。

让我们来试试:

In [1]: response.xpath('//title')
Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>]

In [2]: response.xpath('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: response.xpath('//title/text()')
Out[3]: [<Selector xpath='//title/text()' data=u'Open Directory - Computers: Programming:'>]

In [4]: response.xpath('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: response.xpath('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

提取数据

现在,我们来尝试从这些页面中提取些有用的数据。

您可以在终端中输入 response.body 来观察HTML源码并确定合适的XPath表达式。不过,这任务非常无聊且不易。您可以考虑使用Firefox的Firebug扩展来使得工作更为轻松。详情请参考 使用Firebug进行爬取借助Firefox来爬取

在查看了网页的源码后,您会发现网站的信息是被包含在 第二个 <ul> 元素中。

我们可以通过这段代码选择该页面中网站列表里所有 <li> 元素:

response.xpath('//ul/li')

网站的描述:

response.xpath('//ul/li/text()').extract()

网站的标题:

response.xpath('//ul/li/a/text()').extract()

以及网站的链接:

response.xpath('//ul/li/a/@href').extract()

之前提到过,每个 .xpath() 调用返回selector组成的list,因此我们可以拼接更多的 .xpath() 来进一步获取某个节点。我们将在下边使用这样的特性:

for sel in response.xpath('//ul/li'):
    title = sel.xpath('a/text()').extract()
    link = sel.xpath('a/@href').extract()
    desc = sel.xpath('text()').extract()
    print title, link, desc

注解

关于嵌套selctor的更多详细信息,请参考 嵌套选择器(selectors) 以及 选择器(Selectors) 文档中的 使用相对XPaths 部分。

在我们的spider中加入这段代码:

import scrapy

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        for sel in response.xpath('//ul/li'):
            title = sel.xpath('a/text()').extract()
            link = sel.xpath('a/@href').extract()
            desc = sel.xpath('text()').extract()
            print title, link, desc

现在尝试再次爬取dmoz.org,您将看到爬取到的网站信息被成功输出:

scrapy crawl dmoz

使用item

Item 对象是自定义的python字典。 您可以使用标准的字典语法来获取到其每个字段的值。(字段即是我们之前用Field赋值的属性):

>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'

为了将爬取的数据返回,我们最终的代码将是:

import scrapy

from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        for sel in response.xpath('//ul/li'):
            item = DmozItem()
            item['title'] = sel.xpath('a/text()').extract()
            item['link'] = sel.xpath('a/@href').extract()
            item['desc'] = sel.xpath('text()').extract()
            yield item

注解

您可以在 dirbot 项目中找到一个具有完整功能的spider。该项目可以通过 https://github.com/scrapy/dirbot 找到。

现在对dmoz.org进行爬取将会产生 DmozItem 对象:

[scrapy] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
     {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
      'link': [u'http://gnosis.cx/TPiP/'],
      'title': [u'Text Processing in Python']}
[scrapy] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
     {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
      'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],
      'title': [u'XML Processing with Python']}

保存爬取到的数据

最简单存储爬取的数据的方式是使用 Feed exports:

scrapy crawl dmoz -o items.json

该命令将采用 JSON 格式对爬取的数据进行序列化,生成 items.json 文件。

在类似本篇教程里这样小规模的项目中,这种存储方式已经足够。 如果需要对爬取到的item做更多更为复杂的操作,您可以编写 Item Pipeline 。 类似于我们在创建项目时对Item做的,用于您编写自己的 tutorial/pipelines.py 也被创建。 不过如果您仅仅想要保存item,您不需要实现任何的pipeline。

下一步

本篇教程仅介绍了Scrapy的基础,还有很多特性没有涉及。请查看 初窥Scrapy 章节中的 还有什么? 部分,大致浏览大部分重要的特性。

接着,我们推荐您把玩一个例子(查看 例子),而后继续阅读 基本概念